Minimal slope conjecture of F-isocrystals

نویسندگان

چکیده

The minimal slope conjecture, which was proposed by K. S. Kedlaya, asserts that two irreducible overconvergent F-isocrystals on a smooth variety are isomorphic to each other if both constitutions of filtrations other. We affirmatively solve the conjecture for curves and $$\overline{{\mathbb {Q}}}_p$$ -F-isocrystals varieties over finite fields.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphisms of F-isocrystals and the Finite Monodromy Theorem for Unit-root F-isocrystals

We discuss Tate-type problems for F-isocrystals, that is, the full faithfulness of the natural restriction functors between categories of overconvergent F-isocrystals on schemes of positive characteristic. We prove it in the cases of unit-root F-isocrystals. Using this result, we prove that an overconvergent unit-root F-isocrystal has a finite monodromy.

متن کامل

F–isocrystals and Homotopy Types (f–isocristaux Et Types D’homotopie)

We study a positive characteristic analog of the nonabelian Hodge structure constructed by Katzarkov, Pantev, and Toen on the homotopy type of a complex algebraic variety. Given a proper smooth scheme X over a perfect field of characteristic p and a Tannakian category C of isocrystals on X, we construct an object XC in a suitable homotopy category of simplicial presheaves whose category of loca...

متن کامل

Semistable Reduction of overconvergent F -isocrystals I: Isocrystals and Rigid Cohomology

Notation 1.1.2. By a k-variety, I meant a reduced (not necessarily irreducible) separated scheme of finite type over k. (It could be shown that the theory only depends on the reduced scheme structure.) Through out the talk, X will be an open subscheme of a k-variety Y and Z = X\Y is the complement with the reduced scheme structure. P will always denote a topologically finite type formal scheme ...

متن کامل

Semistable Reduction of overconvergent F -isocrystals I: Isocrystals and Rigid Cohomology

Notation 1.1.2. By a k-variety, I meant a reduced (not necessarily irreducible) separated scheme of finite type over k. (It could be shown that the theory only depends on the reduced scheme structure.) Through out the talk, X will be an open subscheme of a k-variety Y and Z = X\Y is the complement with the reduced scheme structure. P will always denote a topologically finite type formal scheme ...

متن کامل

Overholonomicity of overconvergent F-isocrystals over smooth varieties

We prove the overholonomicity of overconvergent F-isocrystals over smooth varieties. This implies that the notions of overholonomicity and devissability in overconvergent F-isocrystals are equivalent. Then the overholonomicity is stable under tensor products. So, the overholonomicity gives a p-adic cohomology stable under Grothendieck’s cohomological operations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2022

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-022-01146-5